Differentiation of Inverse Trigonometric Functions
If tan θ=81...
Question
If tan θ=815, then the value of 17sinθ+5cosθ5tanθ+8sinθis
A
5941
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
3541
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
4159
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
4135
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C4159 tanθ=815=perpendicularbase Therefore perpendicular=8 base=15 hypotenuse=√perpendicular2+base2=√82+152 hypotenuse=17 ...(i) Hence sinθ=817 and cosθ=1517 ...(ii) Substituting in the expression we get 17sinθ+5cosθ5tanθ+8sinθ =8+17383+17 =4159 Hence answer is C