The correct option is
C ±(a2+b2)4√a2+b2(ab8+ba8)We have tanθ=ab=oppositesideadjacentside
∴by Pythagoras theorem, we have (hypotenuse)2=(oppositeside)2+(adjacentside)2=√a2+b2
tanθ is positive in first and third quadrants.
When θ is in first quadrant,we have
sinθ=a√a2+b2
and cosθ=b√a2+b2
Now,sinθcos8θ+cosθsin8θ
=a√a2+b2(b√a2+b2)8+b√a2+b2(a√a2+b2)8
=a(a2+b2)4√a2+b2b8+b(a2+b2)4√a2+b2a8
=(a2+b2)4−12(ab8+ba8)
When θ is in third quadrant,we have
sinθ=−a√a2+b2
and cosθ=−b√a2+b2
Now,sinθcos8θ+cosθsin8θ
=−a√a2+b2(−b√a2+b2)8+−b√a2+b2(−a√a2+b2)8
=−a(a2+b2)4√a2+b2b8+−b(a2+b2)4√a2+b2a8
=−(a2+b2)4−12(ab8+ba8)
∴sinθcos8θ+cosθsin8θ=±(a2+b2)4−12(ab8+ba8)
=±(a2+b2)4√a2+b2(ab8+ba8)