If tanθ=pq and θ=3ϕ(0<θ<π2), prove that psinϕ−qcosϕ=2√(p2+q2)
Open in App
Solution
From given relation sinθp=cosθq=√sin2θ+cos2θp2+q2=1√p2+q2 Now putting for p in the q in the L.H.S., we have L.H.S=√(p2+q2)[sinθsinϕ−cosθcosϕ]=√(p2+q2)sin(θ−ϕ)sinϕcosϕ =√(p2+q2).2sin(3ϕ−ϕ)sin2ϕ=√p2+q2∵θ=3ϕ