If tanθ=sinα−cosαsinα+cosα, then
cos2θ=1sec2θ=11+tan2θ
Using sinα−cosαsinα+cosα=tanθ
We get
cos2θ=11+(sinα−cosαsinα+cosα)2=(sinα+cosα)22
⇒sinα+cosα=±√2cosθ
And
sin2θ=1−cos2θ=(sinα−cosα)22⇒sinα−cosα=±√2sinθ
Now,
cos2θ=cos2θ−sin2θ=(sinα+cosα)22−(sinα−cosα)22=sin2α
And
sin2θ=2sinθcosθ=−cos2α