wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If tan θ=17, evaluate cosec2 θsec2 θcosec2 θ+sec2 θ [4 MARKS]

Open in App
Solution

Formula: 2 Marks
Proof: 2 Marks

Given tan θ=17
Also, the given expression is cosec2 θsec2 θcosec2 θ+sec2 θ
Dividing the numerator and denominator by cosec2 θ, we get
cosec2 θsec2 θcosec2 θ+sec2 θ=cosec2θcosec2θsec2θcosec2θcosec2θcosec2θ+sec2θcosec2θ=1tan2θ1+tan2θ=1(17)21+(17)2=1171+17=6787=68=34
Alternate Method: tan θ=17=PBP=1 and B=7
Now, H2=B2+P2=(7)2+(1)2H2=8H=22
cosec2θsec2θcosec2θ+sec2θ=(HP)2(HB)2(HP)2+(HB)2=(221)2(227)2(221)2+(227)2=8878+87=487647=4864=34

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon