Formula: 2 Marks
Proof: 2 Marks
Given tan θ=1√7
Also, the given expression is cosec2 θ−sec2 θcosec2 θ+sec2 θ
Dividing the numerator and denominator by cosec2 θ, we get
cosec2 θ−sec2 θcosec2 θ+sec2 θ=cosec2θcosec2θ−sec2θcosec2θcosec2θcosec2θ+sec2θcosec2θ=1−tan2θ1+tan2θ=1−(1√7)21+(1√7)2=1−171+17=6787=68=34
Alternate Method: tan θ=1√7=PB⇒P=1 and B=√7
Now, H2=B2+P2=(√7)2+(1)2⇒H2=8⇒H=2√2
∴ cosec2θ−sec2θcosec2θ+sec2θ=(HP)2−(HB)2(HP)2+(HB)2=(2√21)2−(2√2√7)2(2√21)2+(2√2√7)2=8−878+87=487647=4864=34