If tan θ = 1√7 then (cosec2 θ−sec2 θ)(cosec2 θ+sec2 θ) = ?
(a) −23 (b) −34 (c) 23 (d) 24
tan θ = 1√7 then (cosec2 θ−sec2 θ)(cosec2 θ+sec2 θ) = ?
tanθ=Opposite sideAdjacent side
Let ‘x’ be the hypotenuse
By applying Pythagoras
AC2=AB2+BC2x2=12+(√7)2x2=1+7=8x=√8=2√2cosec θ=ACAB=2√2sec θ=ACBC=2√2√7
Substitute, cosec, sec in equation
(cosec2 θ−sec2 θ)(cosec2 θ+sec2 θ)=(2√2)2−(2√2√7)2(2√2)2+(2√2√7)2=8−4×278+4×27=8−878+87=56−8756+87=4864=34