If tan θ=2021, show that (1−sinθ+cosθ)(1+sinθ+cosθ) = 37.
Let us consider a right Δ ABC right angled at B
Now it is given that tanθ=ABBC=2021
So, if AB = 20k, then BC = 21k where k is a positive number
Using Pythagoras theorem, we have
AC2=AB2+BC2
AC2=(20k)2+(21k)2
AC2=841k2
AC=√841k2=29k
Now
sinθ=ABAC=2029
cosθ=BCAC=2129
Substitute these values in
(1−sinθ+cosθ)(1+sinθ+cosθ)
=1−2029+21291+2029+2129
=29−20+212929+20+2129
=3070=37