If tanθ=ab, show that asinθ−bcosθasinθ+bcosθ=a2−b2a2+b2
Given =tanθ=ab
To show: asinθ−bcosθasinθ+bcosθ=a2−b2a2+b2
Since, tanθ=ab
⇒sinθcosθ=ab⇒bsinθ=acosθ=λ(say)⇒sinθ=λbandcosθ=λa
How, asinθ−bcosθasinθ+bcosθ=a.λb−b.λaa.λb+b.λa
=λ(ab−ba)λ(ab+ba)=ab−baab+ba=a2−b2aba2+b2ab=a2−b2a2+b2
Hence proved.