If tan θ=ab, then b cos 2θ+a sin 2θ is equal to
a
b
ab
ba
Given that, tan θ=ab
∴ b cos 2θ+a sin 2θ==b(1−tan2θ1+tan2θ)+a(2 tan θ1+tan2θ)=⎛⎝1−a2b21+a2b2⎞⎠+a⎛⎝2ab1+a2b2⎞⎠=b(b2−a2b2+a2)+(2a2ba2+b2)=ba2+b2[b2−a2+2a2]=(a2+b2)b(a2+b2) = b
If a tan θ = b, then a cos 2θ + b sin 2θ =
If tan θ=t then tan 2θ+sec 2θ is equal to