The correct option is A √2 cos θ, √2 sin θ
We have tan θ=sin α−cos αsin α+cos α
⇒tan θ=sin(α−π4)cos(α−π4)⇒tan θ=tan(α−π4)
Since it is given that 0<θ<π, we can write,
⇒θ=α−π4⇒α=θ+π4
Hence sin α+cos α=sin(θ+π4)+cos(θ+π4)
=1√2sin θ+1√2cos θ+1√2cos θ−1√2sin θ
=√2 cos θ
and sin α−cos α=sin(θ+π4)−cos(θ+π4)
=1√2sin θ+1√2cos θ−1√2cos θ+1√2sin θ
=2√2sin θ=√2 sin θ.