If tan(θ)+sec(θ)=ex, then cos(θ) equals
ex+e-x2
2ex+e-x
ex-e-x2
ex-e-xex+e-x
Explanation for the correct option
Given: tan(θ)+sec(θ)=ex -------(1)
As we know that sec2(θ)-tan2(θ)=1
⇒(secθ-tan(θ))(secθ+tan(θ))=1
from equation (1)
⇒(secθ-tan(θ))(ex)=1⇒secθ-tan(θ)=1ex-----(2)
adding both equations
⇒tan(θ)+sec(θ)-tan(θ)+sec(θ)=ex+1ex⇒2secθ=ex+e-x⇒1cos(θ)=ex+e-x2⇒cos(θ)=2ex+e-x
Hence, option B is correct.