As tanθ+sinθ=a and tanθ−sinθ=b, then, simplifying the LHS of a2−b2=4√ab.
a2−b2=(a−b)(a+b) =(tanθ+sinθ−tanθ+sinθ)(tanθ+sinθ+tanθ−sinθ)
=(2sinθ)(2tanθ)
=4tanθsinθ
Now simplifying the RHS of a2−b2=4√ab.
4√ab=4√(tanθ+sinθ)(tanθ−sinθ)
=4√tan2θ−sin2θ
=4√sin2θcos2θ−sin2θ
=4√sin2θ−sin2θcos2θcos2θ
=4√sin2θ(1−cos2θ)cos2θ
=4√sin2θcos2θ×sin2θ
=4√tan2θsin2θ
=4tanθsinθ
This shows that LHS=RHS.
Hence proved.