wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If tanθ+sinθ=a and tanθsinθ=β show that a2β2=4aβ

Open in App
Solution

Given that,
tanθ+sinθ=a
tanθsinθ=β

aβ=(tanθ+sinθ)(tanθsinθ)

=tan2θsin2θ

=sin2θ(1cos2θ1)

=sin2θ(1cos2θcos2θ)

=sin2θ(sin2θcos2θ)

=sin2θtan2θ............(i)

a2β2=(tanθ+sinθ)2(tanθsinθ)2

=4tanθsinθ [(a+b)2(ab)2=4ab]

=4aβ [From (i)]

Hence prove.





flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Allied Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon