wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If (tanθ+sinθ)=m and (tanθsinθ)=n, prove that

(m2n2)2=16mn.

Open in App
Solution

m=(tanθ+sinθ)n=(tanθsinθ)m2n2=(m+n)(mn)=(tanθ+sinθ+tanθsinθ)(tanθ+sinθ(tanθsinθ))=(2tanθ)(tanθ+sinθtanθ+sinθ)=(2tanθ)(2sinθ)=4tanθ sinθ(m2n2)2=16sin2θ tan2θ(1)mn=(tanθ+sinθ)(tanθsinθ)=tan2θsin2θ=sin2θ(1cos2θ1)=sin2θ(1cos2θcos2θ)=sin2θ(sin2θcos2θ)=sin2θ tan2θ16mn=16sin2θ tan2θ(2)From (1) and (2),(m2n2)2=16mn


flag
Suggest Corrections
thumbs-up
128
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon