wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If tanθ+sinθ=m and tanθsinθ=n, prove that (m2n2)=±4mn.

Open in App
Solution

tanθ+sinθ=m and tanθsinθ=n


m2n2=(m+n)(mn)

=(tanθ+sinθ+tanθsinθ)(tanθ+sinθtanθ+sinθ)

=(2tanθ)(2sinθ)

=4tanθsinθ

4mn

=4(tanθ+sinθ)(tanθsinθ)

4=((tanθ)2(sinθ)2)


=4(sinθ)2(1cos2θ1)

=4sinθ(1cos2θ)(cosθ)2


=4sinθ(tanθ)2

=4sinθtanθ

Hence
LHS=RHS (Proved)


flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Where Friction?
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon