If tan θ+sin θ=m and tan θ−sin θ=n
Show that m2−n2=4√mn [4 MARKS]
Concept: 1 Mark
Substitution: 1 Mark
Application: 2 Marks
m2−n2=(m+n)(m−n)
=(tan θ+sin θ+tan θ−sin θ)(tan θ+sin θ−tan θ+sin θ)
=(2 tan θ)(2 sin θ)
=4 tan θ sin θ ......... (1)
4√mn=4√(tan θ+sin θ)(tan θ−sin θ)
=4√tan2 θ−sin2 θ
=4√sin2 θcos2 θ−sin2 θ
=4√sin2 θ−sin2 θ cos2 θcos2 θ
=4√sin2 θ(1−cos2 θ)cos2 θ
=4 tan θ sin θ .......... (2)
From (1) and (2)
m2−n2=4√mn