If tan(θ)+sin(θ)=m and tan(θ)-sin(θ)=n then
m2-n2=4mn
m2-n2=m2+n2
Explanation for correct option
Given: tan(θ)+sin(θ)=m and tan(θ)-sin(θ)=n
m2-n2=tan(θ)-sin(θ)2-tan(θ)+sin(θ)2⇒(m+n)(m-n)=tan(θ)-sin(θ)+tan(θ)+sin(θ)tan(θ)+sin(θ)-tan(θ)+sin(θ)∵a2-b2=(a-b)(a+b)⇒m2-n2=2tan(θ)2sin(θ)⇒m2-n2=4tan(θ)sin(θ)
Now,
mn=tan(θ)+sin(θ)tan(θ)-sin(θ)∵(a-b)(a+b)=a2-b2⇒mn=tan2(θ)-sin2(θ)⇒mn=sin2(θ)cos2(θ)-sin2(θ)∵tan(x)=sin(x)cos(x)⇒mn=sin2(θ)1-cos2(θ)cos2(θ)⇒mn=tan2(θ)sin2(θ)∵tan(x)=sin(x)cos(x),sin2(x)+cos1(x)=1⇒mn=tan(θ)sin(θ)
⇒m2-n2=4mn
Hence, option C is correct.
If secθ=m and tanθ=n, then 1mm+n+1m+n is equals to
If sinθ+cosθ=m and secθ+cosecθ=n, then nm+1m-1=