If tanθ+sinθ=m and tanθ−sinθ=n, then (m2−n2)2mn=
16
tanθ+sinθ=m,tanθ−sinθ=n
m2−n2=(tanθ+sinθ)2−(tanθ−sinθ)2
=4 tanθ sinθ
(m2−n2)2=16 tan2θsin2θ ...(i)
mn=(tanθ+sinθ)(tanθ−sinθ)
=tan2θ−sin2θ
=sin2θcos2θ−sin2θ
=sin2θ(1cos2θ−1)
=sin2θ(sec2θ−1)
⟹mn=sin2θtan2θ ....(ii)
Dividing eqn (i) by eqn (ii) we get,
(m2−n2)2mn=16 tan2θsin2θsin2θ tan2θ
=16