Given:
tan θ+sin θ=m…(1)
tan θ−sin θ=n…(2)
Adding equations (1) and (2), we get
m+n=2 tan θ…(3)
Subtracting equation (2) from (1), we get
m−n=2 sin θ…(4)
Multiplying (3) and (4), we get
4sinθ tanθ=(m+n)(m−n)
⇒ m2−n2=4 sin θ tan θ
[∵ (a+b)(a−b)=a2−b2]
Hence, Proved.