wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If tanθ+sinθ=m and tanθsinθ=n, then show that m2n2=4mn .

Open in App
Solution

tanθ+sinθ=mtanθsinθ=nFromtheaboveequations,wegettanθ=m+n2,sinθ=mn2
tanθ+sinθ=mtanθ(1+cosθ)=m(1)tanθsinθ=ntanθ(1cosθ)=n(2)1+cosθ1cosθ=mnn+ncosθ=mmcosθcosθ=mnm+ncos2θ=1sin2θ=(mnm+n)21(mn2)2=(mnm+n)2(m+n)2(m2n22)2=(mn)24mn=(m2n2)2416mn=(m2n2)2(m2n2)=16mn=4mn

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon