wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If tanθ+sinθ=m,tanθsinθ=n and mn, then show that m2n2=4mn

Open in App
Solution

Given, m=tanθ+sinθ,n=tanθsinθ
We need to show m2n2=4mn
Taking L.H.S.,
m2n2=(tanθ+sinθ)2(tanθsinθ)2
=tan2θ+sin2θ+2tanθ.sinθtan2θsin2θ+2tanθ.sinθ
=4tanθ.sinθ
Now, taking R.H.S.,
4mn=4(tanθ+sinθ)(tanθsinθ)
=4tan2θsin2θ
=4sin2θcos2θsin2θ
=4sin2θ(1cos2θ)cos2θ
=4sin2θ.tan2θ
=4tanθ.sinθ
Therefore, L.H.S. = R.H.S.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythagorean Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon