If tanθ=√ab where a,b are positive real and θ∈1st quadrant then the value of sinθsec7θ+cosθcsc7θ is
tanθ=√ab
sec2θ=1+tan2θ
sec2θ=a+bb
cotθ=√ba
cosec2θ=1+cot2θ=a+ba
sinθsec7θ+cosθcsc7θ=tanθ(sec2θ)3+cotθ(cosec2θ)3
=√ab(a+bb)3+√ba(a+ba)3
=(a+b)3(√ab3√b+√ba3√a)
=(a+b)3(a4+b4)(ab)72