If tan θ=t then tan 2θ+sec 2θ is equal to
1+t1−t
1−t1+t
2t1−t
2t1+t
tan 2θ+sec 2θ=2 tan θ1−tan2 θ+1+tan2θ1−tan2θ=2 tan θ+1+tan2 θ1−tan2θ=(1+tan θ)21−tan2 θ=(1+tan θ)(1+tan θ)(1+tan θ)(1−tan θ)=1+tan θ1−tan θ=1+t1−t [tan θ=t(given)]
If (tan θ + cot θ) = 5 then (tan2 θ + cot2 θ) = ?
(a) 27 (b) 25 (c) 24 (d) 23