If tanθ+tan(π3+θ)+tan(−π3+θ)=a tan 3θ, then a is equal to
We have, tanθ+tan(π3+θ)+tan(−π3+θ)=a tan 3θ ⇒tanθ+√3+tanθ1−√3tanθ+tanθ−√31+√3θ=a tan 3θ ⇒tanθ+8tanθ1−3tanθ=a tan 3θ ⇒3(3 tanθ−tan3θ)(1−3tan2θ)=a tan 3θ ⇒3 tan 3θ=atan 3θ ⇒a=3
If tan (π4+θ)+tan(π4−θ)=λ sec 2θ, then