If tan(θ)=xsin(ϕ)1-xcos(ϕ) and tan(ϕ)=ysin(θ)1-ycos(θ), then xy=
sin(ϕ)sin(θ)
sin(θ)sin(ϕ)
sin(θ)1-cos(θ)
sin(θ)1-cos(ϕ)
Explanation for correct option
Step 1: Simplify in terms of x
Given: tan(θ)=xsin(ϕ)1-xcos(ϕ) and tan(ϕ)=ysin(θ)1-ycos(θ)
tan(θ)=xsin(ϕ)1-xcos(ϕ)⇒xsin(ϕ)=tan(θ)1-xcos(ϕ)⇒xsin(ϕ)=tan(θ)-xtan(θ)cos(ϕ)⇒tan(θ)=xtan(θ)cos(ϕ)+sin(ϕ)⇒x=tan(θ)tan(θ)cos(ϕ)+sin(ϕ)
Step 2: Simplify in terms of y
tan(ϕ)=ysin(θ)1-ycos(θ)⇒tan(ϕ)1-ycos(θ)=ysin(θ)⇒tan(ϕ)-ytan(ϕ)cos(θ)=ysin(θ)⇒tan(ϕ)=y(tan(ϕ)cos(θ)+sin(θ))⇒y=tan(ϕ)(tan(ϕ)cos(θ)+sin(θ))
Step 3: Solve for the value of xy
xy=tan(θ)tan(θ)cos(ϕ)+sin(ϕ)tan(ϕ)tan(ϕ)cos(θ)+sin(θ)⇒xy=sin(θ)cos(θ)sin(θ)cos(θ)cos(ϕ)+sin(ϕ)sin(ϕ)cos(ϕ)sin(ϕ)cos(ϕ)cos(θ)+sin(θ)⇒xy=sin(θ)cos(θ)sin(θ)cos(ϕ)+cos(θ)sin(ϕ)cos(θ)sin(ϕ)cos(ϕ)sin(ϕ)cos(θ)+cos(ϕ)sin(θ)cos(ϕ)⇒xy=sin(θ)sin(θ+ϕ)sin(ϕ)sin(θ+ϕ)∵sin(x)cos(y)+cos(x)sin(y)=sin(x+y)⇒xy=sin(θ)sin(ϕ)
Hence, option B is correct.
Let f be a function 2fx,y=fxy+fyxand f1=p≠1. Then p-1∑r=1nfr=