The correct option is
B nπ+π6,∀∈Zgiven,tanx+2tan2x+4tan4x+8cot8x=√3
To solve the expression . we first find tanx -cotx
→tanx−cotx
→tnax−1/tanx
→tan2−1tanx
Multiplaying 2 in both numerator & denominator
→−2(1−tan2x)2tanx→−22tanx1−tan2x→−2tan2x→−2cot2x
So, tanx−cotx=−2cot2x
Now, let a=tanx+2tan2x+4tan4x+8cot8x
Add & subtract cotx in a
→a=(tanx−cotx)+2tan2x+4tan4x+8cot8x+cot8x
→a=−2cot2x+2tan2x+4tan4x+8cot8x+cotx
→a=+2(tan2x−cotx)+4tan4x+8cot8x+cotx
→a=−4cot4x+4tan4x+8cot8x+cotx
→a=4(tan4x−cot4x)+8cot8x+cotx
→a=−8cot8x+8cot8x+cotx
→a=cotx
∴cotx=√3
The solution is nπ+π6,∀z