CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
Question

If tanx+2tan2x+4tan4x+8cot8x=3 then the general solution of x=

A
nπ+π3,Z
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
nπ+π6,Z
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
nπ+π4,Z
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
nπ,Z
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B nπ+π6,Z
tanx+2tan2x+4tan4x+8cot8x=3
formulaused
tanxcotx
=tanx1tanx
=tan2x1tanx
=2[1tan2x2tanx]
=2[12tanx1tan2x]
=2[1tan2x]
=2cotx
tanx=tanα
x=nπ+α
tanx+2tan2x+4tan4x+8cot8x=3
addingandsubtractingcotx
tanxcotx+2tan2x+4tan4x+8cot8x+cotx=3
2cot2x+2tan2x+4tan4x+8cot8x+cotx=3
2[tan2xcot2x]+4tan4x+8cot8x+cotx=3
2[2cot4x]+4tan4x+8cot8x+cotx=3
4cot4x+4tan4x+8cot8x+cotx=3
4[tan4xcot4x]+8cot8x+cotx=3
4[2cot8x]+8cot8x+cotx=3
8cotx+8cotx+cotx=3
cotx=3
1tanx=3
tanx=13=tan(π6)
x=nπ+π6

flag
Suggest Corrections
thumbs-up
0
mid-banner-image
mid-banner-image
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App