wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If tanx=512 in the third quadrant, then find the other trigonometric ratios.


Open in App
Solution

Step 1: Find the Hypotenuse using right angled triangle approach

We know that in the third quadrant sine,cosine,secent and cosecant is negative and tangent,cotangent is positive.

Given that tanx=512 in the third quadrant

We know that tanθ=PerpendicularBase

Let Perpendicular=5t and Base=12t

Therefore the Hypoteneus is

Hypoteneus=±Base2+Perependicular2Hypoteneus=±12t2+5t2Hypoteneus=±144t2+25t2Hypoteneus=±169t2Hypoteneus=±13t

Step 2: Find the value of trigonometric ratios

sinx=-PerpendicularHypoteneusnegativesignbecausexlieinthethirdquadrantsinx=-5t13tsinx=-513

cosecx=1sinxcosecx=-135

cosx=-BaseHypoteneusNegativesignasxlieinthirdquadrantcosx=-12t13tcosx=-1213

secx=1cosxsecx=-1312

cotx=1tanxcotx=125

Hence, sinx=-513,cosx=-1213,cotx=125,secx=-1312andcosecx=-135


flag
Suggest Corrections
thumbs-up
6
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon