If tanx=ba , then the value of acos2x+bsin2x is
a
a–b
a+b
b
Explanation for correct option
Given tanx=ba
∴acos2x+bsin2x=a1-tan2x1+tan2x+b2tanx1+tan2x∵cos2x=1-tan2x1+tan2xandsin2x=2tanx1+tan2x=a1-tan2x+b2tanx1+tan2x=a1-ba2+2bba1+ba2∵tanx=ba=a2-b2a+2b2aa2+b2a2=a2+b2aa2+b2a2=a
Hence, option (A) is correct i.e. a
If tan x=ba, then find the value of √a+ba−b+√a−ba+b
If a,b,c be positive, then minimum value of b+ca + c+ab + a+bc is ___