Step 1: check quadrant for sinx2,cosx2 and tanx2
Given that 180∘<x<270∘
⇒180∘2<x2<270∘2
⇒x2 lies in 2nd quadrant.
In 2nd quadrant, sin is positive. cos and tan are negative
∴sinx2 is positive, cosx2 and tanx2 are negative.
Step 2: solve for the value of tanx2
tanx=2tanx21−tan2x2⇒34=2 tan x21−tan2x2
⇒3−3tan2x2=8tanx2
⇒3tan2x2+8tanx2−3=0
⇒3tan2x2+9tanx2−tanx2−3=0
⇒3tanx2(tanx2+3)−1(tanx2+3)=0⇒(3 tanx2−1)(tanx2+3)=0
⇒tanx2=13 or tanx2=−3
Since x2 lies in 2nd quadrant.
∴tanx2 is negative.
⇒tanx2=−3
Step 3:
1+tan2x2=sec2x2
⇒1+(−3)2=sec2x2⇒sec2x2=1+9⇒secx2=±√10
But x2 lies in 2nd quadrant, therefore secx2 is negative
⇒secx2=−√10
∴cosx2=−1√10
Step 4:
Solve for the value of sinx2
sin2x2+cos2x2=1
⇒sin2x2=1−(−1√10)2⇒sin2x2=910
⇒sinx2=±3√10
But sinx2 is positive
∴sinx2=3√10