If tanx=2ba−c(a≠c),y=acos2x+2bsinxcosx+csin2xandz=asin2x−2bsinxcosx+cos2x, then
A
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B We have, y+z=a(cos2x+sin2x)+c(sin2x+cos2x)=a+c (∴solutionis(b)} y−z=a(cos2x−sin2x)+4bsinxcosx −c(cos2x−sin2x) =(a−c)cos2x+2bsin2x =(a−c).(1−tan2x1+tan2x)+2b.(2tanx1+tan2x) =(a−c).⎧⎪⎨⎪⎩1−4b2(a−c)21+4b2(a−c)2⎫⎪⎬⎪⎭+2b.⎧⎪⎨⎪⎩2.2b(a−c)1+4b2(a−c)2⎫⎪⎬⎪⎭ Since tanx=2b(a−c), ∴y−z=(a−c).{(a−c)2−4b2}+8b2(a−c)(a−c)2+4b2 =(a−c)(a−c)2+4b2{(a−c)2+4b2}=(a−c) ⇒y≠z,(∵a≠c).