If tan x=ba, then find the value of √a+ba−b+√a−ba+b
Given that, tan x=ba
∴ √a+ba−b+√a−ba+b=√(a+b)2+√(a−b)2√(a−b)√(a+b)=(a+b)+(a−b)√a2−b2=2a√a2−b2=2aaa√1−(ba)2[∵ ba=tan x]=2√1−tan2x=2cos x√cos2x−sin2x
[∵ cos 2x=cos2x−sin2x]=2cos x√cos 2x