If tanx=n.tany,nϵR+ then maximum value of sec2(x−y) is equal to-
A
(n−1)22n
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(n+1)2n
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(n+1)22
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(n+1)24n
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is C(n+1)24n Let, z=sec2(x−y)=1+tan2(x−y) ⇒z=1+(tanx−tany1+tanxtany)2=1+(ntany−tany1+ntan2y)2 ⇒z=1+(n−1)2(tany1+ntan2y)2=1+(n−1)2(t1+nt2)2 by putting t=tany Now for max value of z we have dzdt=0 ⇒2(n−1)2(t1+nt2)(1+nt2−t(2nt)(1+nt2)2)=0 ⇒1−nt2=0⇒t2=1n Hence zmax=1+(n−1)2⎛⎜
⎜
⎜⎝1n(1+n(1n))2⎞⎟
⎟
⎟⎠=1+(n−1)24n=(n+1)24n