The correct option is B (n+1)24n
Given:
tanx=ntany
We know that,
tan(x−y)=tanx−tany1+tanxtany⇒tan(x−y)=ntany−tany1+ntan2y⇒tan(x−y)=(n−1)tany1+ntan2y⇒sec2(x−y)−1=(n−1)2tan2y(1+ntan2y)2⋯(1)
Now, using A.M.≥G.M. for 1,ntan2y, we get
1+ntan2y2≥√ntany
Squaring both sides,
⇒(1+ntan2y)24≥ntan2y⇒(1+ntan2y)2≥4ntan2y⇒14n≥tan2y(1+ntan2y)2⇒(n−1)24n≥(n−1)2tan2y(1+ntan2y)2
Using equation (1), we get
⇒(n−1)24n≥sec2(x−y)−1⇒1+(n−1)24n≥sec2(x−y)∴(n+1)24n≥sec2(x−y)
Hence, the minimum value of sec2(x−y) is (n+1)24n