If tan x =n tany, n∈R+, then maximum value of sec2(x−y)=___
(n+1)24n
tan x=n tan y
cos (x-y)=cosx cosy +sin x sin y
=cos x cos y (1+ tan x tan y)
=cosxcosy(1+ntan2y)sec2(x−y)=sec2xsec2y(1+ntan2y)2=(1+tan2x)(1+tan2y)(1+ntan2y)2=(1+n2tan2y)(1+tan2y)(1+ntan2y)2=1+(n−1)2 tan2y(1+n tan2y)2
Now, (1+ntan2y2)2≥ntan2y
⇒tan2y(1+tan2y)2≤14n⇒sec2(x−y)≤1+(n−1)24n=(n+1)24n.