If tanx−tan2x>0 and |2sinx|<1 then the range of x for which both conditions hold good is (where n∈Z)
A
⋃n∈Z(nπ,nπ+π6)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
⋃n∈Z(nπ−π4,nπ+π6)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
⋃n∈Z(nπ−π6,nπ+π6)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
⋃n∈Z(nπ,nπ+π4)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A⋃n∈Z(nπ,nπ+π6) tanx−tan2x>0 ⇒tanx(tanx−1)<0 ⇒0<tanx<1 ⇒0<x<π4 ⇒nπ<x<nπ+π4,n∈Z |sinx|<12 ⇒−π6<x<π6∵period of sinxisπ⇒−π6+nπ<x<π6+nπ,n∈Z ∴Solution set for both the given inequalities is nπ<x<nπ+π6.