Given: tanx+tan(x+π3)+tan(x+2π3)=3,
To prove: 3tanx−tan3x1−3tan2x=1.
Now,
tanx+tan(x+π3)+tan(x+2π3)=3
⇒tanx+tanx+tanπ31−tanπ3tanx+tanx+tan2π31−tan2π3tanx =3
⇒tanx+tanx+√31−√3tanx+tanx+tan2π31−tan2π3tanx =3
⇒tanx+9tanx1−3tanx2x=3
⇒9tanx−3tanx2x1−3tanx2x=3
∴3tanx−tan3x1−3tan2x=1.
Hence proved.