wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If tanx+tan(x+π3)+tan(x+2π3)=3, then prove that 3tanxtan3x13tan2x=1.

Open in App
Solution

Given: tanx+tan(x+π3)+tan(x+2π3)=3,

To prove: 3tanxtan3x13tan2x=1.

Now,
tanx+tan(x+π3)+tan(x+2π3)=3

tanx+tanx+tanπ31tanπ3tanx+tanx+tan2π31tan2π3tanx =3

tanx+tanx+313tanx+tanx+tan2π31tan2π3tanx =3

tanx+9tanx13tanx2x=3

9tanx3tanx2x13tanx2x=3

3tanxtan3x13tan2x=1.

Hence proved.

flag
Suggest Corrections
thumbs-up
5
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon