Iftany=2t(1-t2) and sinx=2t(1+t2), then dydx =
21-t2
11+t2
1
2
Explanation for Correct Option:
Given,
sinx=2t1+t2andtany=2t1-t2
Step 1: Differentiate sinx with respect to t
cosx=dxdt=(1+t2)(2)−2t(0+2t)​1+t22cosx=dxdt=2+2t2−4t21+t22cosx=dxdt=2-2t21+t22
dxdt=21-t21+t22×1+t21+t22-4t2∵cosx=1-sin2xdxdt=21-t21+t22×1+t21+t4+2t2-4t2dxdt=21-t21+t22×1+t21+t22=21+t2....(i)
Step 2: Differentiate tanx with respect to t
tany=2t1-t2sec2ydydt=(1−t2)(2)−2t(0−2t)​1-t22=2+2t21-t22dydt=2(1+t2)(1-t2)2×11+2t1-t22∵sec2x=tan2x+1dydt=2(1+t2)(1-t2)2×(1-t2)2(1-t2)2+4t2=2(1-t2)(1-t2)2dydt=21+t2....(ii)
Step 3: Differentiate equations (i) and (ii) with respect to x
dydx=dydtdxdt=21-t221-t2=1
Hence Option (3) is correct.