The correct option is B sinh2βcsc2α
tan(y+z)=tany+tanz1−tanytanz
From the question,
⇒tan(y+z)=tanαtanhβ+cotαtanhβ1−tanαcotαtanh2β
tan(y+z)=tanhβ(tanα+cotα)1−tanh2β
=tanhβ(tanα+cotα)sech2β
=tanhβcosh2β(sinαcosα+cosαsinα)
=sinhβcoshβcosh2β(sinαcosα+cosαsinα)
=sinhβcoshβ1sinαcosα
Multiply and divide the above equation by 2 we get
=2sinhβcoshβ12sinαcosα
=sinh2βcsc2α