If tanA=a(a+1) and tanB=1(2a+1), then the value of A+B is?
tanA=a(a+1)
cotA=a+1(a)=1+1a [∵cotA=1tanA]
and, tanB=1(2a+1)
cotB=2a+1
tan(A+B)
=(tanA+tanB)[1−tanAtanB]
=(cotA+cotB)[cotAcotB−1] [On dividing numerator and denominator by tanAtanB]
=(1+1a+2a+1)[(1+1a)×(2a+1)−1]
=2a2+2a+1a2a2+2a+1a
=1
tan(A+B)=1
∴A+B=π4 or 5π4 or nπ+π4