If tanA=34,cosB=941, where π<A<3π2 and 0<B<π2, find tan(A+B).
We have,
tanA=34,cosB=941
∴sinB=√1−cos2B
=√1−(941)2
=√1−811681
=√16001681
=4041
∴tanB=sinBcosB=4041941=409
Now,
tan(A+B)=tanA+tanB1−tanA tanB
=34+4091−34×409=27+1603636−12036 =18736−8436=−18784