If tanh-1x+iy=12tanh-12x1+x2+y2+i2tan-12y1-x2-y2;x,y∈R then tanh-1iy is
itanh-1y
-itanh-1y
itan-1y
-tan-1y
Explanation for the correct option
Given that tanh-1x+iy=12tanh-12x1+x2+y2+i2tan-12y1-x2-y2
Substituting x=0, we get,
tanh-1iy=i2tan-12y1-y2
Say y=tanθ
⇒tanh-1iy=i2tan-12tanθ1-tan2θ=i2tan-1tan2θ∵2tanθ1-tan2θ=tan2θ=i22θ=iθ⇒tanh-1iy=itan-1y∵y=tanθ
Hence, the correct option is option(C) i.e. itan-1y
If h(x) = min {x,x2} for x ϵ R. Find LHD and RHD at x = 1.