The correct option is A 2(2n+1), n∈Z.
Here, the given equation can be written as:
tan(pπ4)=cot(qπ4)⇒tan(pπ4)=tan(π2−qπ4) Now, the general solution of the above equation can be given as:pπ4=nπ+π2−qπ4, n∈Z.⇒pπ4+qπ4=(n+12)π, n∈Z.⇒(p+q)π=4(2n+1)2π, n∈Z.⇒(p+q)=2(2n+1), n∈Z.