The correct option is B
512
Given, secθ+tanθ=32
Now, we know the trigonometric identity: sec2θ−tan2θ=1.
Then, sec2θ−tan2θ=1⇒(secθ−tanθ)(secθ+tanθ)=1⇒(secθ−tanθ)×32=1⇒(secθ−tanθ)=23
Now, subtracting both equations we get,
(secθ+tanθ)−(secθ−tanθ)=32−23⇒2tanθ=56⇒tanθ=512
Hence, the option b. is correct.