If
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}-->
x3x−y−z=y3y−z−x=z3z−x−y and x+y+z≠0, then show that the value of each ratio is equal to 1. [3 Marks]
Open in App
Solution
Let x3x−y−z=y3y−z−x=z3z−x−y=k
By theorem of equal ratios, k=x+y+z(3x−y−z)+(3y−z−x)+(3z−x−y) [1 Mark] ⇒k=x+y+z(3x−x−x)+(3y−y−y)+(3z−z−z) [1 Mark] ⇒k=x+y+zx+y+z ⇒k=1
∴ Each ratio = 1 [1 Mark]