wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cosθ=513 and π2 < θ < π then find the values of

(i) sin 3 θ +sin 5 θ

(ii) tan 3 θ

Open in App
Solution

Given;

cosθ=513 and π2 < θ < π

sinθ=1cos2θ [Since, sinθ is positive in second quadrat]

sinθ=1(513)2

sinθ=16924169

sinθ=144169

sinθ=1213 ------(1)

Now, tanθ=sinθcosθ

tanθ=1213513

tanθ=125-------(2)

Now,

(i) sin 3 θ +sin 5 θ

=2sin(3θ+5θ2)cos(3θ5θ2)

=2sin4θcosθ

=2(2sin2θcos2θ)(cosθ)

=4(2sinθcosθ)(12sin2θ)cosθ

=8(1213)(513)(12(1213)2)(513)

=480169(169288169)(513)

=480169(119169)(513)

=285600371293


(ii) tan 3 θ

tan 3 θ=3tanθtan3θ13tan2θ

=3(125)(125)313(125)

=3(125)(1728125)13(125)2

=36(25)+17281252543225

=82812540725

=828125×25407

=828814

=414407


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebraic Operations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon