If cosθ=−513 and π2 < θ < π then find the values of
(i) sin 3 θ +sin 5 θ
(ii) tan 3 θ
Given;
cosθ=−513 and π2 < θ < π
sinθ=√1−cos2θ [Since, sinθ is positive in second quadrat]
⇒sinθ=√1−(−513)2
⇒sinθ=√169−24169
⇒sinθ=√144169
⇒sinθ=1213 ------(1)
Now, tanθ=sinθcosθ
tanθ=1213−513
tanθ=−125-------(2)
Now,
(i) sin 3 θ +sin 5 θ
=2sin(3θ+5θ2)cos(3θ−5θ2)
=2sin4θcosθ
=2(2sin2θcos2θ)(cosθ)
=4(2sinθcosθ)(1−2sin2θ)cosθ
=8(1213)(−513)(1−2(1213)2)(−513)
=−480169(169−288169)(−513)
=−480169(−119169)(−513)
=−285600371293
(ii) tan 3 θ
tan 3 θ=3tanθ−tan3θ1−3tan2θ
=3(−125)−(−125)31−3(−125)
=3(−125)−(−1728125)1−3(−125)2
=−36(25)+172812525−43225
=−828125−40725
=−828125×25−407
=828814
=414407