If cosecθ−sinθ=a3, secθ−cosθ=b3
then a2b2(a2+b2)=
cscθ−sinθ=a3
⇒1−sin2θsinθ=a3
⇒cos2θsinθ=a3−(1)
secθ−cosθ=b3
⇒1−cos2θcosθ=b3
⇒sin2θcosθ=b3−(2)
(1)÷(2)⇒cos3θsin3θ=a3b3
tanθ=ba−(3)
(1)×(2)⇒cos2θsinθ×sin2θcosθ=a3b3
sinθ.cosθ=a3b3−(4)
(3)×(4)⇒sin2θ=a2b4
(4)÷(3)⇒cos2θ=a4b2
(3)⇒1+b2a2=1+tan2θ=sec2θ
Given, a2b2(a2+b2)=a4b2(1+b2a2)
=cos2θ×sec2θ=1