The correct option is C (−1,2] ∪ [3,∞)
Given : sgn(x−2x+1)≤x−12
Case −(1):If sgn(x−2x+1)=1
⇒x−2x+1>0⇒x∈(−∞,−1)∪(2,∞) ⋯(i)
Now the inequality becomes,
1≤x−12⇒x∈[3,∞) ⋯(ii)
Taking (i)∩(ii), we get
⇒x∈[3,∞) ⋯(A)
Case −(2): If sgn(x−2x+1)=−1
⇒x−2x+1<0⇒x∈(−1,2) ⋯(iii)
Now the inequality becomes,
−1≤x−12⇒x≥−1⇒x∈(−1,∞) ⋯(iv)
Taking (iii)∩(iv)
⇒x∈(−1,2) ⋯(B)
Case −(3): If sgn(x−2x+1)=0
⇒x−2x+1=0⇒x=2 ⋯(v)
Now the inequality becomes,
0≤x−12⇒x≥1⋯(vi)
Taking (v)∩(vi)
⇒x∈{2} ⋯(C)
From (A)∪(B)∪(C), we get
x∈(−1,2]∪[3,∞)