The correct option is A 0
||x+2|−3|=sgn(1−∣∣∣(x−2)(x+6)(x+4)(x2+1)(x+4)(x+6)(x−2)∣∣∣)⇒||x+2|−3|=sgn(1−∣∣∣1x2+1∣∣∣); x≠2,−4,−6
⇒||x+2|−3|=sgn(x2x2+1) …(1)
We know x2x2+1≥0 for all x∈R
Case 1:
At x=0,
RHS of equation (1) is 0 but LHS ≠0
Hence, x=0 is not the solution.
Case 2:
For x≠0
||x+2|−3|=1⇒|x+2|−3=±1
⇒|x+2|=4,2⇒x+2=±4,±2⇒x=2,−4,0,−6
But x≠−6,−4,0,2
Hence, there is no solution.