The correct option is A 2abc
Let sin−1a=A,sin−1b=B,sin−1c=C
⇒sinA=a,sinB=b,sinC=c
Given A+B+C=π, which is possible iff A,B,C∈[0,π2]
Now,
a√(1−a2)+b√(1−b)2+c√(1−c2)
=sinA√(1−sin2A)+sinB√(1−sin2B)+sinC√(1−sin2C)
=sinAcosA+sinBcosB+sinCcosC (∵A,B,C∈[0,π2])
=12(sin2A+sin2B+sin2C)
=2sinAsinBsinC=2abc